SPECIFICATIONS

GNSS Performance		
Channels	1760	
GPS	L1C/A, L1PY, L2C, L2P, L5	
GLONASS	L1CA, L2CA, L2P, L3 CDMA	
BeiDou	B1I, B1C, B2a, B2I, B3 ¹¹	
Galileo	E1, E5a, E5b, E5 AltBoc	
QZSS	L1C/A, L2C, L5	
SBAS	Egnos, WAAS, GAGAN, MSAS,	
	SDCM (L1, L5)	
Navic	L5	
L-Band	Reserve	
Positioning Accuracy		
Code Differential	Horizontal: ±0.25m+1ppm	
GNSS Positioning	Vertical: ±0.50+1ppm	
SBAS Positioning	Typically<5m 3DRMS	
Fast Static and Static	Horizontal: ±2.5mm+0.5ppm	
ciallo alla ciallo	Vertical: ±5mm+0.5ppm	
Post Processing	Horizontal: ±8mm+1ppm	
Kinematic (PPK)	Vertical: ±15mm+1ppm	
Real Time Kinematic	Horizontal: ±6mm+0.5ppm	
(RTK)	Vertical: ±10mm+1ppm	
Network RTK (VRS,	Horizontal: ±6mm+0.5ppm	
FKP, MAC)	Vertical: ±10mm+1ppm	
RTK Initialization Time	7s	
Positioning Rate	1Hz-50Hz	
Inertial Measurement	Tilt Angle: up to 60 degrees	
mortial modear official	Accuracy: down to 2-5cm	
	7.000.009. 00 10 _ 00	
Data Formats		
Positioning Data	NMEA 0183, PSIC, PJK, Binary Code	
	RTCM 2.1, RTCM 2.3, RTCM 3.0,	
Differential Correction	RTCM 3.1, RTCM 3.2,CMR,CMR+	
Static	STH, Rinex 2, Rinex 3	
Network	Supported VRS, FKP, MAC, Ntrip	
Operation Mode		
Base	Internal or External radio\ Wifi	
Rover	Rover UHF\Rover Bluetooth	
Static	Static\PPK	
Static	Station 1 T	
UHF Radio Chracteristics		
TX\RX	2 Watt Transmitting & Receiving	
	=	

410-470MHz

Farlink\Trimtalk\SOUTH(KOLIDA)

60 channels for Farlink protocol

120 channels for other protocols

Hardware		
Size	13cm*8cm	
Weight	0.8kg	
Data Storage	4GB SSD internal storage	
	Support external USB storage	
	(up to 32 GB)	
	Automatic cycle storage	
	Changeable record interval	
	Up to 20Hz raw data collection	
Communication	5 Indicator lights	
	1 Button	
	1 Type C USB port	
	1 5-PIN LEMO external power port	
	1 UHF antenna port	
	Soc System	
	WEB UI	
	WIFI: 802.11 b/g/n standard	
	Bluetooth 4.2 standard and Bluetooth	
	2.1+EDR	
	NFC	
	Supported USB, FTP, HTTP data	
	communication	
Voice Guide	Intelligent voice technology provides	
	status indication and operation guide	
	Chinese, English, Korean, Russian,	
	Portuguese, Spanish, Turkish and user	
	define	
Environment	Operating: -30°C to +70°C	
	Storage: -40°C to +80°C	
Humidity	100% condensation	
Ingress Protection	IP68 waterproof, sealed against sand	
	and dust	
Shock	Survive 2m pole drop on concrete	
	Power	
Battery	7.4V, 6800mAh unremovable battery	
Battery Life	Up to 12-15 hours in rover mode	
Fast Charge	4 hours charge to full power	
USB charge	Type-c USB/Power Bank	

Field Software

Frequency Range

Protocols

Channels

Field Genius

Add: 7/F, South Geo-information Industrial Park, No.39 Si Cheng Road, Tian He IBD, Guangzhou 510663, China Tel: +86-20-22139033 Fax: +86-20-22139032

Email: export@kolidainstrument.com market@kolidainstrument.com http://www.kolidainstrument.com

K9X

Palm Size, Higher Efficiency!

1760 GNSS Channels

Inertial Measurement Tilt Compensation

Compact 13 cm x 8 cm

GPS/GLONASS/Galileo/ BeiDou/QZSS/SBAS/Navic constellation support Farlink UHF Radio up to 2 Watt TX 4 GB SSD Internal Memory

Light Weight 0.8 kg

0.8 kg Sluetooth Wi-fi

Bluetooth, Wi-fi, NFC wireless communications

The Newly Developed SERIES GNSS Engine Ensuring You Uncompromisable RTK performance

The X-Series GNSS Engine

The all new "X-Series" GNSS Engine and the advanced technologies inside improve your ability to measure in more place than ever before and allow you to carry on with the highest possible efficiency.

Multipath Effect Mitigation Technology

This feature is to disentangle direct signal and those reflected from nearby structures, it ensures the accurate result when you are measuring close to buildings or water area.

Anti-vibration Shock

This feature is for robust tracking during high vibrations and shocks. It increases the accuracy stability when you are working on the busy road or construction site or mining site where the heavy vehicles and machinery often pass by.

Tilt Measurement by Inertial Navigation

KOLIDA's 3rd generation Inertial Measurement Sensor "M8" is able to realize the real-time output of accurate tilt measurement data under high tilt angle and high dynamic attitude.

Electromagnetic Interference Mitigation

This feature is to help the receiver to keep obtaining correction data signal with high quality, even there is a interference source nearby.

Protection Against Ionospheric Disturbances

This feature is to make correction to lonospheric delay error, and upgrade the positioning accuracy when you are doing network RTK positioning over a long distance (10-40 km).

Optimized for Use in Challenging Environments

Constantly Updated GNSS Positioning Engine

K9X enjoys a powerful 1760-channel GNSS Engine that delivers the more advanced satellite tracking algorithm.

This all-new Kolida "X-Series" GNSS Engine is able to track signal from 5 satellite constellations (GPS, Glonass, Beidou, Galileo, QZSS), process signal of more than 20 frequencies. When compared to traditional GNSS RTK, K9X is more capable to work in challenging environment and can provide more accurate result.

"Farlink" Radio Transmitting and Receiving

When GNSS receiver is using signal of bigger number of satellites, the data amount to send and receive by UHF radio increased greatly. Farlink technology is developed to send large number of data and avoid data loss.

Farlink technology improves the signal-catching sensitivity from -110db to -117db, so K9X can catch the very weak signal from a base station far way.

Smaller but More Durable

Thanks to the high-capacity battery and the intelligent power management plan, K9X can work up to 12 hours in RTK radio rover mode, up to 15 hours in static mode. The charging port is Type-C USB, users can choose KOLIDA quick charger or their own smartphone charger or power bank to recharge.

Ultra Light, Comfortable Experience

K9X is an ultra light GNSS receiver that leaves the competition behind. Its total weight is only 0.8 kg including battery, 40% even 50% lighter than a traditional GNSS receiver. The light-weight design reduces surveyor's fatigue, increase their mobility, is especially helpful to work in challenging environment.

Ksurvey APP

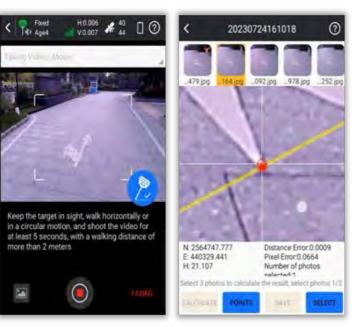
Field Data Collection & Mapping: The Most Advanced is Here

Measure & Draw: Save Time in Field work and Office

This feature allows you to draw the result map while completing point measurements.

- Before measuring points, users can choose the shape of the target object to be measured from 11 preset figures. The software will guide you to measure points in an order and automatically connect lines and complete the drawing of the figure.
- The .dxf or .dwg maps created on-site can be used directly in office work.
- Users can assign measured objects with different attributes, to different layers for measurement and management, making no mistakes.

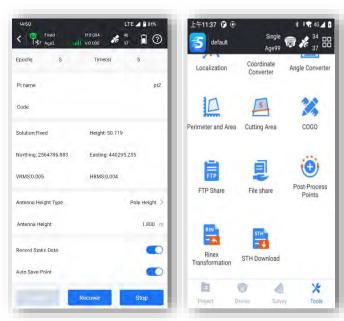
CAD Draw: Drafting without a PC



This feature enables CAD drawing capabilities, which were previously only possible on a PC. Now surveyors can edit CAD map on RTK controller or tablet or phones.

- CAD drawing does not require a computer.
- CAD files prepared on office PCs can be edited and managed by users on RTK data collection terminals.
- Drawing tools include up to 11 types of figures and one type of text.

Visual Positioning: Industry-Leading Non-Contact Measurement Technology

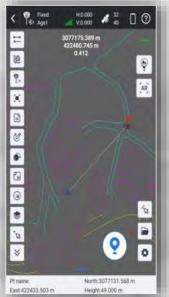


(This function only works with the receiver models that have front-facing camera or dual-cameras)

Photogrammetry Measurements can be conducted by taking pictures or videos. Coordinates of all points in the photos can be acquired.

- Now, target points that are inaccessible due to dangerous environments, poor satellite signals, or impassable terrain can be measured remotely.
- The captured image data can also be used with software like SGO, Pixel4D, DJI Terra, and CC for 3D modeling.
- Image measurement data can also be combined with drone measurement data to address issues of blurriness and deformation in ground data models collected by drones.

Static & PPK Measurement: More Assistance Now is Available

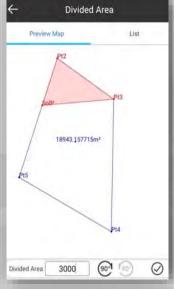

The software provides both static and PPK data collection capabilities.

- Data can be downloaded wirelessly, no need for a PC and cables.
- It is possible to convert .sth files into RINEX files right on the data collector or tablet or your phone, no need of PC.
- Data can be shared with others through mobile Internet.
- The accuracy of PPK data collection is as high as Trimble equipment, the result can be directly imported for use in TBC.

Ksurvey APP

Stakeout: Lighten Your Load, Increase Your Output

CAD Stake-Out: Save Labor Cost and Reduce Errors


Traditional data collection software requires users to import points or lines to be setout from .csv or .txt files, users need to spend quite a lot of time to edit point and line libraries.

Moreover, for complex shapes such as curves, circles, and polygons, the traditional stake-out process is complicated. Now, our new CAD stake-out program offers a superior solution for surveyors.

- No need for manual editing of point libraries.
- Staking-out geometric shape is faster and easier.
- No need for obtaining coordinate files before work. Staking-out can be done with just a CAD drawing.
- Online maps and CAD drawings can be displayed simultaneously, improving accuracy.
- AR guide lines make staking-out more intuitive.

Area Division: Developed for Professional Cadastral Survey and Stake Out

Select points to form a polygon, and directly identify the area division points for the surveyor to stake out. There is no more need for the user to guess a position to measure, and then to adjust.

- Six methods of division to determine the area division points. The methods are flexible and suitable to different user needs.
- The graphic display is intuitive and understandable.

Live-View Stake-Out: Faster, More Accurate, More Intelligent

(This function only works with the receiver models that have downward-facing camera or dual-cameras)

Users utilize the real-time imagery captured by the camera at the bottom of the receiver and the AR guide lines displayed by the software, to locate the target points.

- When users perform stake-out with a dual-camera GNSS receiver, the software can call upon both cameras to work together. At medium to long distances, the software uses the front-facing camera to indicate the direction of travel, and at close range, it uses the downward-facing camera to find the specific location. This further increases the speed of staking out.
- AR guide lines can be displayed in point staking out, line staking out, and CAD staking out programs.

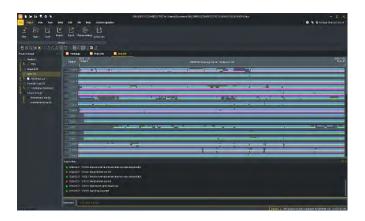
Additional Features

Compatible with Multiple Devices

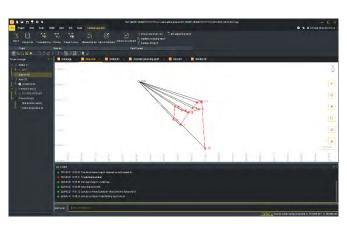
The App Now works with GNSS, Total Station, Echo Sounder, GIS Tablet, in future it will work with SLAM Scanner, Terrestrial Lidar Scanner.

Innovations for Better User Experience

- RTK Data Backup
- QR Code Share
- Multiple Basemap Support
- **■** Basemap Adjustment
- Network Mount Point Sorting
- NMEA Output Setting


.....

0



KOLIDA Geo Office (KGO)

Ideal GNSS Data Processor, Help You To Keep Advancing

Data Processing & Reporting

When surveyors need to do post-processing of GNSS data, our software always can provide state-of-the-art technology to help you to produce optimal results.

User just need to import field data, the software will automatically process GNSS baselines.

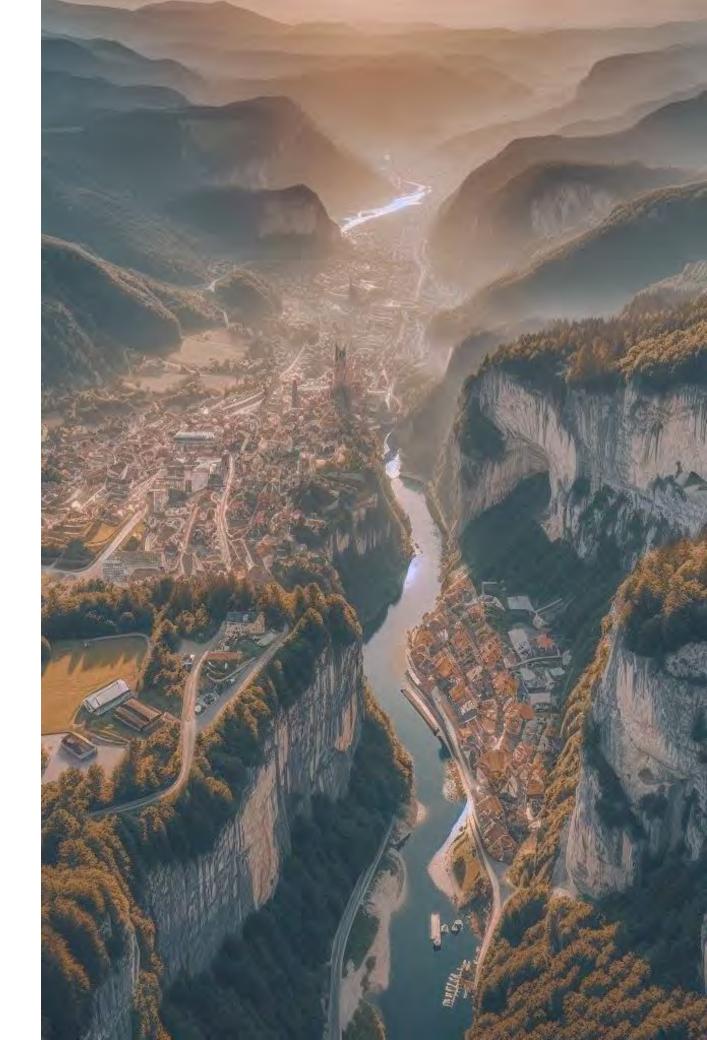
Once results come out, the software can generate reports.

High Accuracy Guaranteed

RTK check, the unique function in our software, can compare RTK and PPK results to automatically acquire the most accurate coordinates for each target point.

It fills up the gap of poor corrections in RTK or hindered observations in PPK.

This improvement is to provide guarantee for your every survey.


RINEX Import and Export

This feature enables users to import the third party GNSS receiver data into our software and post-process it, by using the industry standard RINEX format.

3D Modelling

User can import photogrammetry image data into the software, to achieve 3D modeling, visually presenting geographic information data such as coordinates, areas, and volumes.

Model data can be transformed into different formats and applied with various coordinate parameters based on actual needs, making it adaptable to a wider range of application scenarios.

