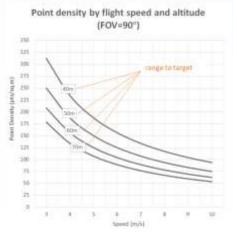
Specification


LIDAR SYSTEM		
Model	SZT-V100	
Laser Channels	16 channels	
Laser Measurement Range	100 m	
Field of View (Vertical)	+15.0° to -15.0° (30°)	
Angle Resolution (Vertical)	2.0°	
Field of View (Horizontal)	360°	
Angle Resolution (Horizontal/Azimuth)	0.1° to 0.4°	
Max. Means Rate	Single Return Mode: ~300,000 points per second	
	Dual Return Mode: ~600,000 points per second	
Accuracy	Relative Accuracy: 5 cm; Absolute Accuracy: 10 cm	
Camera Effective Pixels	24.3 MP, RGB	
Recommended scanning height AGL	10-80 m	
Net Weight	1.5 kg (w/o camera)	
Dimensions	116.5*112*123	
Input Voltage	11-30 V DC	
Power Consumption	20 W	
Data Storage	250 GB SSD	
Part I: Laser Scanner		
Туре	Velodyne LiDAR PUCK VLP-16	
Wavelength	903 nm	
Laser Product Classification	Class 1 Eye-safe-per IEC 60825-1:2007 & 2014	
Range Accuracy	up to ±3 cm (typical)	
Rotation Rate	5 Hz ~ 20 Hz	
Environment Protection	IP67	
Temperature	operating: -10°C~60°C; storage: -40°C~105°C	
Part II: POS System		
Туре	Inertial Labs INS-D-OEM	
Gyroscopes Bias in-run Stability	1 deg/hr (RMS, Allan Variance)	
Gyroscopes Measurement Range	±450 deg/sec	
Accelerometers Measurement Range	±8 g	
Post Processing Roll/Pitch Accuracy	0.006 deg RMS	
Post Processing Heading Accuracy	0.03 deg RMS	
Post Processing Position H/V Accuracy	0.005/0.01 meters, RMS	
Post Processing Velocity H/V Accuracy	0.02/0.01 meters/sec, RMS	
Data Sampling Rate	IMU: 200 Hz, GNSS positions: 50 Hz	

Package

K@L

ltem	Recommended Configuration			
nem	UAV-based	SUV-based		
hardware				
LiDAR Sensor	SZT-V100	SZT-V100		
Imaging Sensor	Sony ILCE-a6000	FLIR LadyBug5+		
Carrier Platform	DJI Matrice600 Pro	(conventional SUV models)		

Point density by flight speed and altitude

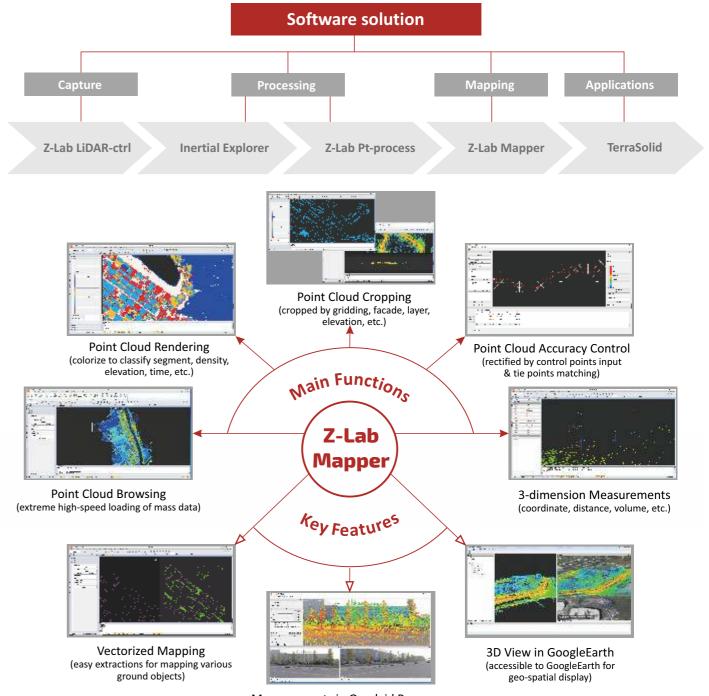
D

GUANGDONG KOLIDA INSTRUMENT CO., LTD.

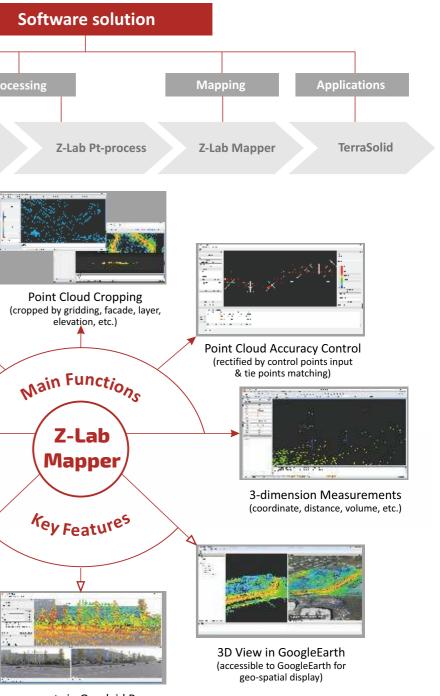
Add: 7/F, South Geo-information Industrial Park, No.39 Si Cheng Road, Tian He IBD, Guangzhou 510663, China Tel: +86-20-22139033 Fax: +86-20-22139032 Email: export@kolidainstrument.com market@kolidainstrument.com http://www.kolidainstrument.com

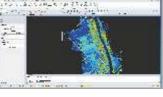
FLY OR DRIVE ? MAP 3D MAP ...

Z-Lab LiDAR Mini LiDAR System SZT-



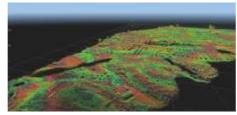
	flight altitude	point density	estimated coverage	
			per flight	per day
	40m	165~231 pts/sq.m	0.13 sq.km	1.3 sq.km
('O'	55m	120~168 pts/sq.m	0.20 sq.km	2.0 sq.km
	70m	94~132 pts/sq.m	0.35 sq.km	3.5 sq.km


Note: the data shown above is based on flat terrain conditions for job reference only, and the estimated coverage per day is computed with 6m/s flight speed, horizontal FOV 80° and 10 flights in total. Complex terrain of elevated areas or vegetated zones might reduce the work efficiency somehow. With the same laser emitting power, the point density varies greatly from reflective distance and reflective ratio of the target, moving speed of the carrier and air permeability. Theoretically, higher point density is possible with customized flight plans while bigger coverage figures are expectable with increased flight numbers.


		roadway to scan per day		
scanning speed	1-3 lanes	4-6 lanes		
	18 km/h	108 km	54 km	
	36 km/h	216 km	108 km	
	54 km/h	324 km	162 km	

Note: the line spacing figures were computed by driving speeds and mileage efficiency was generated from 6-hour effective mobile scanning accordingly. The ground base station is recommended to shift to the next location ahead when the radio datalink radius exceeds 25 km. In case of roads with dense traffic conditions or with green belts/isolation guardrails in the middle of 2-way, it's required to conduct multiple drives for filling the data gaps due to earlier occlusions.

Topographic Survey Jobs


- highly efficient aerial data capture for topographic or cadastral survey
- excellent elevation accuracy control within
- centimeter level
- ideal for highly vegetated areas due to canopy penetrations
- ready for aerial lasergrammetry in places hard to reach or hard to track GPS signals

Traffic Network Development

• highly efficient terrestrial data capture by linear

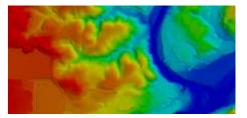
- mobile laser scanning • designed for topographic survey of road/railway
- system development or expansion tailored to asset inventory survey of road/railway
- system against maintenance and evaluation • an ideal alternative of total station or RTK survey
- due to a variety of satisfactory outputs

Forestry Investigation & Planning

· highly efficient aerial data capture for topographic survey in jungles or forests

- to obtain abundant indicative information such as tree height, stem diameter, canopy shape, etc. in short time
- ideal for species identification, deforestation planning & investigation

Applications in Power Transmission Industry


• fast and contactless 3D data capture of power

- lines and ground surface attachments · to provide visualized and analytical management
- for existing power lines network to identify defects on transmission lines through
- geo-referenced point cloud
- ideal for digital transfer of survey, design and engineering accomplishments

Disaster Monitoring & Emergency Response laser scanning is unaffected by light conditions while airborne mode won't suffer from traffic chaos • to obtain topographic data and terrain features in disaster areas for realtime analysis • quick reference for disaster relief and post-disaster reconstruction arrangements

Measurements in Overlaid Panorama (direct measurements in vivid panorama view)

Irrigation System Development

• to conduct topographic survey with data capture of vegetations and ground objects

- to obtain high-precision digital terrain model and orthophoto map for irrigation works planning
- ideal for location optimization, engineering control, landslide monitoring, flow direction analysis, etc.