

Why surveyor-oriented? FLYme is specifically made for professional aerial mapping.

Worried about drone crash or drone loss? FLYme is particularly designed for flight safety control.

Which ranges to perfectly use for? A variety of applications include...

SKYSOLUTIONS

road survey

power line inspection topographic survey

mining survey

road survey skyway generation

smart elevation partition for hilly terrain

Googelearth display of partitioned skyway

specifications

aircraft

system

system structure wingspan packing size take-off weight propulsion system power supply battery power body material

aircraft type

model

FLYme

	fixed-wing
	modular design
	150 cm
	98 cm * 49 cm * 68 cm
	3.5 kg (including camera and drone battery)
n	1000w electric pusher motor, with 13-inch propeller
	lithium polymer battery, one unit
	7000 mAh, 6S, 22.2V
	Industrial EPO foam

operation weather limit performance

radio communication typical, 5-10 km; maximum 30 km transmitting power 0.1-2W beaudfort scale 6, 10.8-12.7 m/s operating temperature −10°C to 50°C environmental humidity 90% condensing

integrated with radio datalink device

Frequency Hopping Spread Spectrum (FHSS)

1W, 915 MHz (869 MHz or 2.4 GHz optional)

5-8 minutes

autopilot

onboard

sensor

airspeedometer	1x
accelerometer	1x
barometer	1x
magnetometer	1x
gyroscope	1x
GPS receiver	1x
airborne PPK/RTK	int
receiver	B1/

autopilot computer 1x

1x inbuilt GNSS chipset (L1/L2 GPS, L1/L2 Glonass, B1/B2 Beidou), data refresh baud rate 20 Hz

single flight range* landing space

endurance

take-off method

landing method

working height

cruising speed*

maximum ceiling

typical, precise parachute landing; optional, belly landing 4000 m typical 120-1400 m typical 20 m/s (72 km/h) not less than 59 minutes, best up to 90 minutes (upon customization) maximum 92 km single flight coverage* maximum 60 sq.km (6,000 ha) @ GSD 20cm precise landing control within 6 m radius

typical, hand launch; optional, catapult launch

imagery payload

imaging sensor sensor type sensor weight resolution value focusing length E 35 mm aperture control F 2.0 image acquisition imaging resolution

Sony RX1RII Exmor R® CMOS, 2/3 full framer 35.9 x 24.0 mm 507 g (includes SD card and battery) 42.4 mpx hot shoe triggering 1.5-20 cm GSD

via logical and intuitive checklist pre-flight checks basic operations flight planning standard flight control camera triggering automated, realtime display fail-safe routines automated auto return

ground control

automatic take-off, flight, data capture and landing includes typical aerial survey programs in addition to upon indications of low battery, high temperature. heavy wind, 30sec radio disconnection and imaging failure fail-safe commands manually controlled, one-key operation APP display via pre-installed GPS tracke

drone tracking

coverage reference

GSD	flight height	coverage per flight	coverage per day
5 cm	388 m	600 ha	2,400 ha
10 cm	776 m	1,200 ha	4,800 ha
15 cm	1164 m	1,800 ha	7,200 ha
20 cm	1552m	2,400 ha	9,600 ha

note: the data shown left is computed according to the 75%/60% (forward/side overlap) from a 60-minute effective flight for a survey zone with aspect ratio around 2:1. And the area coverage per day results from 4 flights in the same day. In theory, bigger coverage figures are expectable with rational parameter settings and increased flight arrangements.

GUANGDONG KOLIDA INSTRUMENT CO., LTD.

Add: 7/F, South Geo-information Industrial Park, No.39 Si Cheng Road, Tian He IBD, Guangzhou 510663, China Tel: +86-20-22139033 Fax: +86-20-22139032 Email: export@kolidainstrument.com market@kolidainstrument.com http://www.kolidainstrument.com

acquisition

performance

single point positioning* relative accuracy (XY/Z)*

3 cm CEP 1-3/1-5 x GSD

absolute accuracy (without GCPs)* absolute accuracy (with GCPs)*

horizontal, down to 3-10 cm; vertical, down to 5-15 cm horizontal, down to 1-2 cm;

vertical, down to 5-10 cm

note: all aspects marked with * are determined by weather conditions and manual operations in practice.

